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INTRODUCTION

Conventionallyi program effectiveness has been judged by comparing

the average levels of achievement of two or more groups (e.g., hypothest/
;

testing). The underlying assumption of this approach is that if a par-

ticular program is superior to another in its effectiveness, then students

in the superior program should score higher than students who are not in

the program. However, there are sound reasons why such an assumption is

inappropriate for programd whose intended outcomes are Zither complete

mastery or some minimal levelIof competency (i.e., results interpreted

against a criterion). If two programs are compared and both fail

to produce mastery or student achievement'at the intended level, then

both programs are ineffective, and, it matters relatively little whether

students in one program outperform those in another, Then, unfike pro-

gram evaluation in which success is determined solely by level of achieve-

ment using,, for instance, group means, it can be argued that the effective-

ness.of a mastery program should be judged by the number of students who

obtain passing scores on a mastery measure. Given the above rationale,

there exists a need for alternative statistical methods for evaluating

program effectt in terms of mastery. A number of statistical limitations ,

also support this need:

In mastery testing, the metrics are not necessarily continuous. The
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outcomes of a mastery test can be considered not as a "score," but rather

as a "sign" (Harris, 1974). That is, all individuals classified as masters

receive a sign, e.g., (+) and all individuals classified as non-masters

receive a different sign, e.g., (-), no matter what score they receive on

the test. Another problem lies in the distribution of mastery. While

the structure of mental abilities has been studied extensively, the struc-

ture of proficiencies is relatively unknown. It has been established, how-

ever, that in measuring mastery the tester is not dealing with the natural

organization of the mind (Cronbach, 1960). How difficult an item is for

a given individual is strictly a function of his experience. Bloom (1968)

has stiggetted that training affects the contours of distributions of true

scores. It may be reasonable to assume that before training occurs, the

aptitude to learn a skill is normally distributed and tne amount of knowl-

edge possessed by most individuals with respect to that scqeific skill is

very little. Mastery learning theory asserts that under appropriate in-

struct4enal conditions, virtually all students can master most ,of what

they are taught (Block & Buros, 1976), and that student test scores

cluster around the higher end of the continuum. Therefore, the distribution

t.eststo7res may be negatively skewed.

When testing for significance of group differences, if the underlying

distributions from the two pOulationS are not of the same shape but are

symmetrical, we encounter little difficulty. If tey differ in skewness,

however, the distribution of obtained t's also has a tendency to be

skewed, with a greater percentage of obtained t's falling outside of one

limit than the other. This tends to bias probability4ptatements (Bc-4u,
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1960). Glass, Peckham and Sanders (1972) also report that skewed popula-

tions can seriously affect the level of significance and power of direc-

tional, or one-tailed, tests.

Another problem arises when we examine the basic assumptions required

for hypothesis testing. For instance, the assumption of homogeneity of

) ariance required by ANOVA would be difficult to meet if various treatment

groups diffeiz in the amount of learning each has acquired. As was pre-

viously stated, before learning takes place, the subject matter of most

students' knowledge clusters around the nonmastery point. After learn-

ing has taken place, most individuals will have mastered the skill, and

their abilities will cluster around the high. end of the continuum of

scores. In either the variance is small. It is at the halfway'

point 7J the training program that individuals' scores tend to spread out

(Boneau, 1966). Violating the i..._umption of homogeneity of variance has

very slight effect on a (type I error), if the sample sizes are equal, al-

though actual aalways Seems to be slightly increased over the nominal a.

With unequal sample size, however, a may he seriously affected. As reported

n Glass (1973), Scheff4 found, for example, in a case where the nominal a

is .05, n
1
= 15 and n

2
= 5 and a

1

2
= .2a22, the actual probability of ob-

taining a significant t-ratio when the null 'ypothesis is. true is .178.

Thus, one is nearly three and one-half times more likely to commit a type I

error than is supposed.

The effects of nonnormality and heterogeneous variance were studied

by Norton (1953) and Boneau (1960). Both studies used only cases with equal

sample size. The results, as summarized by Glass, et al., suggest that

nonnormality and heterogeneous variance appear to combine additively to

affect either level of significance or power.
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This paper presents an alternative method for dealing with the above

limitations. The proposed method assumes a mastery assessment model with

the following characteristics described in terms of the construction and

scoring of mastery tests as well as the organization and reporting of

group testing results:

1) For program evaluation, the skill that is being tested must be

explicitly defined in terms of a performance criterion. Tests designed

to assess mastery of a single skill consist of a collection of test items

which are highly homogeneous in content and form so that each item response

provides an unbiased estimate of the examinee's mastery status with'respect

to that skill.

2) When multiple skills are tested, the knowledge possessed by an

individual missing an item testing skill A is not comparable to that of

an individual missing an item testing skill B. Thus, items constructed .

to test each skill should be considered as constituting a unique test. .

The result of these item groups should be reported in a manner such that

the mastery standing on each skill can be clearly determined. Results

from a multiskill measure should be reported in the form of a vector

having as its elements the mastery decisions representing each skill tested.

3) Regardless of the number of outcome categories (m > 2) (e.g.,

master/nonmaster or ether combinations), each testee can be assigned,

on the basis of his /her score, cto one of several mutually exclusive cate-

gories.with respect to a single skill. On a test of multiple (n > 2) ob-

jectives, an individual will then be assigned to one of the mn possible

categories. For e=xample, on a test of two skills, a testee can be assigned

to one of two categories with respect:to each skill Or = 2); therefore,
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there are 4 (22) possible categories to which an individual can belong:

He can master the first skill but fail the second skill; he can master

the second skill but fail the first skill; he can master both skills;

he can fail both skills.

The following is an example of how test results are reported accord-.
0

ing to the model:

Suppose a reading program on literal comprehension is designed to

.achieve the following objectives:

a. The learner will identify, in a reading selection, the explicitly -

stated main idea.

b. The learner will write a summary of a passage he has just\Kead.

c. Given a reading selection in which a question is posed and the

answer explicitly stated, the learner will identify the answer

to the question.

d. Afte/r reading a given selection, the learner will identify the

correct sequence of its main events or concepts.

Test items reflecting these objectives are then chosen to assess the

success or failure of the reading program. Ten items are randomly selected

for assessing each objective. Mastery is defined as responding correctly

to 8 out of 10 items or making 20%, or less, incK;ect responses. Thus, if

Student A correctly answers 7 items for objective a, 8 fo- b, 4 for c,

and 10 for d, she will be assigned to the mastery group on objectives b

and d. The numeral 0 is assigned to designate nonmastery and 1 for mastery.

Student- A's responses, therefore, may be summarized as a vector with entries

(0,1,0,1). Student B answers 6, 6, 10, and 7 items correctly on objectives

a'to d, and his response pattern, using mastery scoring, will appear as
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(0,0,1,0). By examining each individual's response. vector, it is possible

to ascertain which skills have; and have not, been mastered. This type of

data provides specific information on each indivtdual's mastery status for

each objective and thereby yields a more completediagnosis than does a

single numeral score. It is assumed here, that mastery levels are not ar-

bitrary and that two people with the me ability will attain the same

mastery score.

The model can also be applied to groilip data. For example, to compare

the effectiveness of two teaching methods (A and B) in achieving student

mastery of the previously listed objectives, students are randomly assigned

to two instructional groups. One group uses method A (Group A) and the

other group uses method B (Group 8). Results obtained from measurements

that are designed to test mastery of these objectives can be arranged as

shown in Table 1.

In Group A only,62 students master all four objectives, whereas in

Group 13, 122 students master the four objectives. Three hundred and five

students in Group A and 217 in Group B master,objecti4e a but do not master

objectives b, c, and d.

The data obtained from the use of this model requires a statistical

approach different from the conventional approach used with continuous

data. With continuous data, the independent variables in least-square

analyses may be either categorical or continuous or both. When the response

variables (dependent variables) are qualitative ,(categorical), such as the

data-presented in,Table 1-, however, the statistical analyses change

fundamentally, becSuse the random variable in the statistical model is

(

disL.ete and must be described by a discrete probability distribution.
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TABLE 1
(\;

SAgry of Responses of
Two Method roups on Four Objectives

Response Vectors
Objectives

a b c d

Number of persons with
given mastery pattern
Group A Group B
(Control) (Experimental)

1 1 1 1 62 122
1 1 1 0 70 68

1 1 0 1 31 33
1 1 0 0 41 25

1 0 1 1 283 329
1 0 1 '0 c i4

253 247.

1 0 0 1 200 172
1 0 0 0 305 217

0 1 1 1 / 14 20

0 1 1 0 11 10
0 1 0 1

A
11 11

0 M,, 0 0 14 9

0 0 1 1 31 56
0 0 %-"-1 0 46 55

0 0 0 1 37 64
0 0 0 0 82 53
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Although in large samples these distributions can be approxiMated by, the

continuous univariate and multivaHate normal distribution, the approxi-

mations are often inaccurate in practical-sized samples and cannot be

recommended in general.

The following section discusses an alternative statistical approach- -

one which is appropriate for the analysi!, of the type of complex contin-

gency table data presented in Table 1.

THE LOG-LINEAR MODEL

The study of complex contingency tables stems from the early work

of Bartlett (1939) on contingency table interaction. His work was followed

by that of Fisher (1943) and Norton (1945). More recently, this area of

inquiry has been extended by such scholars as Plackett (1962), Good (1963),

Goodman (1970, 1973), and Bock (1969, 1973).

Bock and Goodman were concerned with the development of general asymp-

totic procedures for testing higher 'order interactions in complex contin-

gency tables. The methods used by these two researchers apply generally

in the analysis of multifactor, multiresponse data when the response is

qualitative but not ranked. The solutions offered by both yield similar

results (Goodman, 1973). The procedure for establishing the.model matrix,

using Bock's method, is straightforward and can easily be generalized to

various experimental designs. Bock's solution, obtained through his method

of estimation, in many respects parallels the general linear model approach

to the univariate and multivariate analysis of variance applied to contin-

uous data (Graybill, 1961).

The following is a description of Bock's Log-Linear Model applied to

the analysis of multivariate quantitative data. In this description, if
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Lateg 1-ies, as in the case of a singe skill test, the catecory frequencies

thus (:Jenerated will be called singleresponse data. Tf each subject makes

a number of responses, and each response is assigned to one of several

mutually exclusive categories as in the case of multiple skills testing,

the resulting frequencies will he called multiple response data.

The Two-Category (Single-Response) Model

The problem of characterizing the relationship between a structured

independent variable and a qualitative response variable is relatively

simple when there are two response categories, e.g., masters and nonmastrs.

Data in this form are referred to as dichotomous or binary.

Let us suppose that the experimenter establishes experimental condi-

tions in which the responses of the subjects are observed. These conditions

differ in physically identifiable or measurable ways which are hypothesized

to influence the probability of response. Let Nj subjects be observed

under experimental condition j. The subjects are then scored dichotomously

according to the presence or absence of some response, in this instance

"mastery" or "nonmastery." Let the number of subjects under experimental

condition j = 1,2,...n) who show the response be rj1 and the number of

subjects who fail to show the response be rj2. Let the corresponding

response proportions be Pil and Pj2; then Pi, + Pj2 = 1. The probability

of rbserving the frequencies ril and ri2 among Ni randomly-selected subjects

is given by the binomial law:

N., r r.,
(1) P(r r. IN.) = 1' 1)j3 P, i6

32 rji. rj2. 1 j_



j data s.,,parateL it can e shown that the

best urbiased estimates of P- and P

(21) P31 rJ] / N.

P., , r. / N.
32 3

are respectively:

But if there is a functional relationship between Pil and an indepen-

dent variable, xj, it may be possible to estimate the population proportions

more accurately by estimating the parameters of this relationship rather

than by using (2). The experimenter's problem is, then, to predict these

proportions by estimating response probabilities P
jl

and P
j2'

expressed as

a function of the independent variables which determine the experimental

conditions.

To avoid computational difficulties arising from inadmissible esti-

mates, and in the hope of simplifying the relationship between the response

probabilities and the independent variables, logistic transformation of the

probabilities is typically performed. In the binomial case, the logistic

response law is defined by:

Z.
(3) ID. e j,

L.
(3)

11 1 + e j

or log (p11 / Pj2) = Zj

The quantity Zi is called a binomial logit. Where there is a single

quantitative independent variable, a polynomial model may be suitable:

1
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or, in matrix notation:

(5)
Z = X 3

nxl nxr rxl

Model (5) parallels the univariate regression model. In that vector Z

corresponds to the expected values of the observations, the matrix X

contains the known value of the independent variable, and a is the vector of

coefficients to be estimated.

The Multiple Response Model

In the multiple response situation, let the number of categories in

the response classification m be equal to or greater than 2 (m > 2). Let

the number of subjects under experimentakcondition j (j = 1,2,...n) who

fall in category h of the classification be r
jh'

where Erj = N
j .

Assume
j h

random sampling of subjects, so that the probability of the response fre-
" -

wencies . is given by the product multinomial:rj

n

(6)

jI

N.!

32 jai

r. r.
2p.j pjm

'32 jm

To express the response probabilities as functions of the experimental

variables, let us introduce the multivariate logits of group j as

zj'= (zip zj2, zjm) and generalize the logistic response law as

follows:
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P., -

ZP
j2

e
J 2

/D. ;

P.
Jm J

= e Jw/D ..
where EL

J
= e

zfl

+ e
z

J'

9

+ + e
z

Jm

In establishing a linear model connecting the logits with the indepen-

lent variables, we must provide for the possibility that structure of the

:ategories is implied in the response, classification. A model for the

logits sufficiently general to include both a structured response classifi-

:ation and multiple experimental variables is as follows:

(8)
Z A
nxm nxq qxt txm

where Z is the logistic transformation of the response proportions.

The rows of Z are zi (j = 1,2,...n).

The matrix X is a matrix of the known values of q independent variables

associated with each of the 'subject groups. In the present model, it

accounts for variation in the response probabilities over the experimental

:onditions. Given the datA presented in Table 1, if the resoonse probabil-

ities of the two instructional groups differ, the basis for this part of

he model (called the physical part) should be rank 2. For example:
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1

X

1

where column 1 accounts for the grand mean and column 2 accounts for

the difference between the two experimental groups.

If the groups do not differ, a rank 1 model comprising only the first

column of this matrix will suffice.

a contains unknown parameters of the effect, and the role of matrix A

in the model is to account for variation of the response probabilities

across categories (m) of the response classification. The categories of

the response classification in the present example are represented by the

different response vectors shown in Table 1. Thus there are 16 categories

in the "response" part of the model. In general, for k dichotomized

responses, there are 2!( categories in the response part of the model.

The rank of the response part of the model depends on the number of

categories and ways of classification in the contingency table, and on how

the response probabilities are assumed to be determined. In this instance,

,the alternatives for establishing the response matrix are: a rank 4 main

category model, a rank 10 first-order interaction model, or a rank 4

second-order interaction model. The basis consists 'of as many rows from

the conventional matrix of single degree of freedom contrasts for a 2k

factorial design excluding the vector corre'sponding to the grand mean.

The grand mean vector is excluded because the response probabilities are

invariant under change of location of the logits. A main category model

is given,:



A

1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1

1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1

1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 r 1 -1 -1

1 -1 1 -1 1 -1 1 -1 1 -1 -1 1*-1 1 -1

14

In the analysis of the data from Table 1, a full rank model would con-

sist of a rank 2 physical part and rank 15 response part. Using the full

rank model, the estimated response probabilities would be equal to the

observed probabilities, and no gain in precision would result from fitting

the model.

If the subject groups have a crossed or nested structure, X will be

the model'matrix for the design and will, in general,be o5 deficient rank.

Suppose the rank of X is r < q. Then it will be necessary toAreparameterize

the model by setting:

K . L ,

nxr. rxq

the rows of L are coefficients of linearly estimatable functions of the
/

parameters in the columns of a. That is,'L must be of rank r and must

satisfy the usual condition for linear estimability:

[

X

rank .. = rank [X] = rank [L] = r

L

Like X, matrix A will also frequently be of less than full rank.

Suppose rank A = s < t, then it will also be necessary to reparameterize

the model for factoring A as:



S . TA=
txs sxm

where rank (S) = s and the columns of S are linearly dependent on

those of A.

After these reparameterizations, (8) becomes:

(9) Z = K(L8S)T

K . r . T
nxr rxs sxm

The Matrix K is the "pre-factor," r, the parameter, and T the "post-

factor," after Roy's. (1957) terminology.

Using the multinomial prob .ability function (6), estimates of the

model (9), parameters can be obtained, given that the model is identified,

through the use of the method of maximum likelihood. This method gives

asymptotically best estimates in that they are asymptotically normally

distributed, consistent, and, in general,-have asymptotically more effi-

cient standard errors than other classeS of estimators (Rao, 1965).

Let us define,in matrix form, the vectors of respqnse frequencies and

6esponse
probabilities for experimental condition j to be:

r.
1

=

rjl

r
j2

.

r.
jm

and P =

P
jl

Pj2

Pjm

Assuming random assignment of samples of subjects

the likelihood equations may be expressed as:

the n groups,

15
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n

(10) j(7) = :T(r - N.P.) x K. = 0 ,

j 3--i

rsxl sxm mxl rxl

where x denotes the Kronecker product and K. is the j-th row of K

written as a column. Successive elements in this expression represent

derivatives taken with respect to rkh, with the second subscript

varying first.

Let us define the mxm matrix:

Pjl(1 - P
jl

)

-P P.
J2 J1

- P.
J

P.
l J2

P
j2

(1 - )
Pj2

- P. P.

j2Pim

-P
jm

P
jl

-P
jm

P
j2

P. (1 - )lo Pm

The rs x rs matrix of second derivatives may then be expressed as:

(11) -11(r) rN TW.T' x K.K:

To obtain the maximum likelihood estimates, the Newton-Raphson

iterative procedure is carried out as frAlows: Starting at initial estimates

for r, called rt, such that:
ti

(12) = dt ,

where the t subscript denotes the iterative step, and

)G(rt)
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where H-1() is the negative of the inverse of the matrix of second

derivatives evaluated at ^t. The process may be repeated until the

corrections (6) vanish.

The theory of maximum likelihood estimation establishes that such

estimates are consistent, i.e., they converge to population values as the

sample size becomes indefinitely large; and their joint distribution is

approximated by the multivariate normal distribution with mean equal to the

population value, and variance-covariance matrix equal to the negative

inverse of the matrix of second derivatives of the likelihood function:

(13) V(?) = H-1(r)

Large sample standard errors for the estimated parameters of the

logistic model are obtained by extracting the diagonal of the matrix of

second derivatives in the final iteration of the Newton-Raphson solution.

Tests of Goodness-of-Fit

The goodness-of-fit of the model to the data, at the final value§ of

the parameters, can be tested by the chi-square approximation for the

likelihdod ratio statistics:

nm
(14) = 2jEzrJ:,K 1n(rJ.LK /N.PJ.LK )xL.R. k

The Pis are the expected, response probabilities computed from the maximum

likelihood estimates of the parameters in the hypothesized model. The

number of degrees of freedom for this chi-square:is the difference between

the number of parameters fitted when the observed proportions estimate

directly the population proportions and the number fitted in the model:
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d.f. = n(m -1) - rs.

In moderate size samples, the Pearsonian chi-square,

nm (r41, 0.9()2
(15) . JI`EZ

jk
m

" jk

and the likelihood ratio chi-square usually differ only slightly. However,

Fisher suggests the L. R. chi-square is more appropriate when some of the

expected values are small.

In the next section, the fictitious data presented in Table I will be

analyzed using the model, as will a set of data taken from an actual eval-

uation study.

APPLICATION OF THE MODEL

The set of data which comprises Table 1 was originally used by Solomon

and haS been analyzed by both Goodman (1973) and Bock (1969). Use of this

data allows for a more complete investigation of the important attributes

of the proposed method of analysis than would be possible using empirical
, . .

data alone.

In the previous discussion, a hypothetical reading program was des-

cribed. Its objectives fell into four areas:

a. Identifying main ideas

b. Writing summaries

c. Selecting correct answers to gyestions about material read

d. Identifying correct sequences of events

Let us suppose the teachers reported that, in their judgment,the program was

effective in teaching students to master the selected skills, that it was
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decided that a test should be constructed to assess student mastery on

these skills, that such a test was constructed and given. We can see that

student responses to such a test could be used to further improve the test.

For example, to study how well the instrument is able to differentiate

masters and nonmasters, the test could be administered to a random sample

of students who went through the program and a random sample of students

who did not.

Results from this hypothetical test are presented in Table 1.

Response vector (1 1 1 1) indicates the number of students who mastered

each of the four objectives: 62 students in the control group mastered

these objectives, and 122 of the experimental students also achieved

mastery. Response vector (0 0 0 0) indicates the number of students who

were classified as "nonmasters" on any of the four objectives.

Several alternatives must be considered in setting up the model for

the analysis. If the response probabilities of the two groups differ, the

basis for the physical part of the model should be rank 2. For example:

X =

There are three alternatives for the response part of the model,

These alternatives are a rank 4 main-category model, a rank 10 first-order

interaction model, or a rank 14 second-order interaction model. The

possible bases for the response part of the model are given by the

appropriate single degree of freedom contrasts for.2
4
factorial design.

For the data that is presented in Table 1, the goodness-of-fit chi-

'square for several alternative models are shown in Table 2.
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TABLE 2

Goodness-of-Fit Tests
for Various Models

Rank of
physical
part

Rank of
response
part.

Degrees of
L.R. chi-square freedom Probability

1 4 188.3615 26. <.0005'

2 4 130.4839 22 <.0005

1 10 74.4613 20 <.0005

2 10 11.5628 10 .40 <p <.30

The rank 2, rank 10 model appears to fit the data well (x2 = 11.5628). The

estimated parameters using this model are shown in Table 3. The Group A +

Group B effect reflects the general response probability of each subtest

for the corresponding issue. Subtest a has high response probability

(a=.75) and subtest b (8.-.76) has low probability, and thus the response

patterns beginning with 1-0 (mastery of objective a; nonmastery of objec-

tive b) are especially frequent. These estimated parameters can be-used

in much the same way as item difficulties of classical test theory: In

general, many students mastered (objective a) main idea and a few mastered

(objective b) writing summaries. Patterns of responses with mastery of

objective c also tend to be more probable, and this tendencyis increased

.by the interactive effect of a joint occurrence of mastery of objective c

With mastery of objective a or b.

.7
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TABLE 3

Estimated Parameters and Standard Errors,
for Rank 2, Rank 10 Model

Physical effect
A B A - B

Estimated Standard Estimated Standard
Response Effect Parameter Error Parameter Error

a .7542 (.03133) .0433 (.06266)
b -.7636 (.03195) .0233 (.06390).
c .1473 (.02984) -.1949 , (.05967),
d -.0120 (.02913) (.05827)

a x b -.0316 (.03116) -.1033 (.06232)
& x c .1240 (.02468) -.0061 (.04936)
a x d .0289 .0907 (.04952)
b x c. .1515 ...(11*

.

-.0427 (.05101)

b xi d .0500 (.02427) -.0839 (.04853)
c x d .1053 (.01894) .0222 (.03790).

The estimated contrasts between Group A and Group B indicate that the

difference between groups is almost entirely due to differences in their

response probabilities or individual subtests (specifically c and d). The

very small values of the interaction contrasts as compared to their

standard errors suggest little difference in pairwise association between

items frc one group to the other. Notice that the two groups are most

differentiated on issues c and d. Both' the experimental and control grOups,

have mastered objective a (0 = .7542 corresponds to an estimated probability

of correct response of 0..82). There is no difference between the level of

mastery of'the experimental and control groups on Objective a (B = .0433

which is not statistically different from zero). This finding also illus-
.

trates the fact that measurements which have medium response probability
c

are better-discriminators than measurements like subtests a and b, which

have extreme (low or high) response probability.
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Table 4 gives the estimated cell frequencies of the rank 2, rank 10

model, which can also be used to check the goodness-of-fit of the model.

(ABLE 4

Response of Students in Member
and Nonmember Groups

Objective
responses
a b c d Control

Observed frequencies Expected frequencies
Experimental Control Experimental

1111 62 122 68.6 120.9
1110 70 68 62.6 66.5
1101 31 33 29.7 33.7
1100 41 25 43.2 27.0

1011 283 329 276.3 322.4
1010 253 247 260-.6 256.2
1001 200 172 201.4 179.1
1000 305 217 302.7 207.4

0111 14 20 11.6 '21.5
0110 11 10 14.3 11.0
0101 11 11 8.2 10.0
0100 14 9 16.0 7.5

0011 31 56 33.5 62.2
0010 46 55 42.6 46.2
0001 37 64 39.7 57.4
0000 82 53 80.2 62.2 -

Total 1491 1491 1491.2 1491.2

Example 2

The following example illustrates the use of mastery measures in

evaluating educational programs with pre- and post-testing. This example

is based on the 10th-grade results of the Los Angeles Unified School

District's ESEA Title III Ecology Program.
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The purpose of the program was to develop a package of learning 'acti-

vities that would effectively teach students to .:aster selected ecologically

related facts and concepts. Students from the 10th-grade biology classe

in the district were randomly selected to participate in the program. One

half of these students were randomly assigned to the experimental group

and were given instructions based on the newly developed 10th-grade Ecology

Learning Activity Module, while the remaining half were assigned to the

control group and continued in their regular programs. To ascertain the

relative merits of the new module compared to the regular program, a test

consisting of several subtests was constructed. Each subtest contained

items measuring a specific objective and was administered to both groups

of students prior to, and immediately following, the ten-week instructional

period.

In the program, mastery was defined as being able to answer at least

75% of the items on a subtest correctly.

The frequency distribution of attainment of mastery on two subtests

is presented in Table 5. The concepts (designated as M and N) measured

by these two subtests are:

Ni: Man, living in different cultural settings throughout
history, has viewed his position it nature in a variety
of ways. These range from living tvis role as a fragile
functional unit, to his believing he has the divine right
to develop,* possess, and to destroy.

N: Modern man's values about how the land should be used
have led to large-scale exploitation and ruin of wild
areas. Some of the ways man destroys land are by clear-
cutting, paving, strip-mining, and dam-building.
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TABLE 5

Frequency Distribution of Attainment of Mastery
on Pre- and Post-testing on Subtests M and N

Subtest M Subtest N

Experimental Control. Pre Post Pre Post

0 0 0 0 28 19
0 0 0 1 9 8
0 0 1 0 8 10
0 0 1 1 7 12

0 1 0 0 10 9

0 1 0 1 19 5

0 1 1 0 7 9

0 1 1 1 24 11

1 0 0 0 4 11

1 0 0 1 3 10
1 0 1 0 8 5

1 0 1 1 8 16

1 1 0 0 20 24
1 1 0 1 28 18
1 1 1 0 14 17

1 1 1 1 93 48

With two experimental conditions, the physical part of the model is set

to be:

X =

1

[
1

1

-1

a

where column 1 accounts for the grand mean and column 2 accounts for the

difference between the two experimental groups.

Each individual's mastery status_wi_th respect to responses M and N

can be classified into one of the following four categories:



25

Post-

testing

Subtest M Subtest N

Pre-testing Pre-testing

Ia c

1

b d + b d

a

a. Non-mastery on both pre- and post-testing.

b. Non-mastery on pre-testing and mastery on post-testing.

c. Mastery on pre-testing but nonmastery on post-testing.

d. Mastery on both testing occasions.

With respect to the two skills, therefore, there are 16 (4 x 4)

possible categories of response classifications. These categories are

represented by the different response vectors in Table 5. The response

matrix resembles a conventional 4
2
factorial design excluding the vector

corresponding to the grand mean. A full rank model (rank 15) consists of

three degrees of freedom (4-1=3) for each for the two main categories, and

9 (3 x 3 = 9) degrees of freedom for the first-order interaction. The

vector for,each single degree of freedom should be constructed according

to the hypotheses the experimentor wishes to test. For instance, suppose

that the following vectors are chosen to form the basis of the response:
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Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 r.,

Row
1 0 -1 1 0 -1 _ 1 0 -1 0 0 0 -1 0 1 1

1 0 -1 -1 -1 011 -1 0 0 0 0 1 1 0 2
1 0 -1 -1 1 0 -1 1 0 0 0 0 1 -1 0 3
1 0 -1 1 0 1 1 0 1 0 0 0 -1 0 -1 4

-1 1 0 1 0'-1 -1 0 1 1 0 -1 . 0 0 0 5
-1 1 0--1 -1 0 1 1 0 -1 .-1 0 0 0 0 .6
-1 1 0 -1 1 0 1 -1 0 -T 1 0 0 0 0 ' 7
-1 1 0 1 0 1 -1 0 -1 1 0 1 0 0 0 8

A =
-1 -1 0 1 0 -1 -1 0 1 -1 0 1 0 0 0 9
-1 -1 0 -1 -1 0 1 1 0 1 1 0 0 0 0 10
-1 -1 0 -1 1 0 1 -1 0 1 -1 0 -0 0 0 11
-1 -1 0 1 0 1 -1 0 -1 -1' 0 -1 0 0 0 12

1 0 1 1 0 -1 1 0 1 0 0 0 1 0 -1 13
1 .0 1 -1 -1 0 -1 -1 0 0 0 0 -1 -1 0 14
1 C 1 -1 1 0 -1 1. 0 0 0 0 -1 1 0 15
1 0 1 1 0 1 1 0 -1 0. 0 0 1 0 1 16

The rows of the matrix correspond to the 16 categories of the response

classification, and each column corresponds to 1 degree of freedom. The

first 3 columns account for the response classifications on subtest M

alone. Columns 4 through 6 account for the response classifications on

subtest N. Columns 7 through 15 are the interaction terms which, in the

logistic model, correspond to association between the interacting classi-

fication; estimates of these effects serve as measures of the direction

and extent of association.

If a full rank model--rank 2 physical part and rank 15 response part- -

is fitted, the estimated response probabilities, would be equal to the,

'observed probabilities. Residual chi-squares can be computed by fitting

a rank 1 response part rank 1 physical part model using column 1 of the

physical matrix (X) and column 1 of the response matrix. By adding

columns 2,3,4 ...,14 successively to the basis of the response matrix,

residual chi-squares can be obtained for models disregarding the difference
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in response patterns between the two experimental conditions. The differ-

ence due to sampling (experimental condition) can be taken into account

by adding column 2 of the sample matrix (X) to the model. Table 6 presents

the residual chi-squares for models of various ranks. The difference

between the respective residuals then provides chi-squares corresponding

to each component.

In the response matrix, column 1 tests the probability of change in

mastery status between ;re- and post-testing versus the probability of no

change on M. Column 4,tests the same hypothesis with respect to subtest N.

Columns,2 and 5 test the probability of positive change versus negative

change on M and N, respectively. Columns 3 and 6 test the probability

of persistent nonmasters versus students who knew the skills from the

beginning.

Since column 1 of the'sample matrix is the grand mean, all modeswith

1 degree of freedom in the sample matrix give the general tendency of the

response pattern. All models with 2 degrees of freedom in the sample

matrix give the interaction of treatment group membership and response

pattern.

General Tendency

In Table 6,the first 6 response components, with the exception of

component 5, are significant at the a = .05 level, and thus the following

conclusions can be drawn:

1. With respect to skill M, disregarding the difference in instructional

group membership,

a. The component x
2
of 209.03 indicates that there is a greater

tendency for students to remain in the same mastery status

)
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TABLE 6

Test of Goodness-of-Fit
Ecology Program Tenth Grade Results

Ranks
Sample Response

Likelihood ratio
residual chi-square df

Component
chi-square df

1 0 464.90 30
1 1 255.87 29 209.03* 1

1 2 250.55 28 5.32* 1

1 3 176.60 27 73.95** 1

1 4 122.88 26 53.72** 1

1 5 120.15 25 2.73 1

1 6 94.14 24 26.01** 1

1 7 88.64 23 5.50* 1

1 8 88.64 22 0.00 1

1 9 88.64 21 0.00 1

1 10 88.53 20 0.11 1

1 11 87.89 19 0.64 1

1 12 87.79 18 0.10 1

1 13 86.85 17 0.94 1

1 14 85.64 16 1.21 1

1 15 65.37 15 10.37** 1

2 A 0 430.38 30
2 1 254.82 28 175.56** 2
2 2 236:90 26 17.92** 2
2 3 161.20 24 75.70** 2

2 4 107.20 22 54.00** 2
2 5 102.11 20 5.09 2
2 6 72.42 18 29.69** 2
2 7 65.29 16 7.13* 2

2 8 65.13 14 0.16 2
2 9 65.08 12 0.05 2
2 10 64.69 10 0.39 2
2 11 55.08 8 9.61** 2

2 12 54.93 6 0.15 2
2 13 54.10 4 0.83 2
2 14 52.91 2 1.19 2
2 15 Null 0 52.91** 2

* *significant at a = .01.

*significant at a = .05.



29

rather than to change (.70 vs. .30, see Table 7). The pre-test

marginals indicate that 63% (Table 7) of the students had already

mastered the material prior to instruction. A program that

results in a much higher probability may be wasteful, while

one that results in a lower probability may need strengthening.

TABLE 7

Contingency Table of_Pre-test by Post-test

(Skill M)

No

Post-
master

testing
Master

Pre-testing
Nonmaster Master

101

(.19)
65
(.12)

94

(.18)
262
(.51)-

195
(.37)

327'
(.63)

166
(.31)

356

(.69)

b. The tendency of positive change is greater than negative change

(x
2
= 5.32). Assuming that an individual cannot unlearn a skill

between pre- and post-testing, the negative change can be used

as an index for measurement error. The significant x
2

thus

enables us to conclude that while it is more likely that students

will remain in the same mastery status rather than change, the

probability of a positive change is nevertheless greater than

error.

The likelihood of mastery on both testing occasions is greater

than for nonmastery on both occasions. Taking points a and b
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into account, it can be concluded,that the material is too

easy for students at the 10th grade.level.

2. With respect to skill N, disregarding the difference in instructional

group membership,

a. The component x
2
value of 73.95 indicates that there is a greater

tendency for students to remain in the same mastery status rather

than to change (.66 vs. .36, see Table a). This tendency again

is due to the heavy concentration of students in the master

master cell.

TABLE 8

Contingency Table of Pre-test by Post-test

(Skill N)

Non-
Master-- Post-

testing
Master

Pre-testing

Nonmaster Master

125

(.24)
78

(.15)

100

(.19)
219

(.42)

225
(.43)

297
(.57)

203
(.39)

319

(.61)

b. Although there is a greater tendency for students to change from

nonmaster to master, the x
2
value of 2.73 indicates that it is

not statistically significantly different from error.

c. There are more consistent masters than persistent nonmaster

I 2
tx = 26.01).
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3. Component 7.is the interaction term of components 1 and 4. (In the

response matrix [p. 26], column 7 is the product of columns 1 and 4.)

This component indicates an association between subtests M and N;

those who are likely to change their mastery status on M are also

likely to change their status on N, while those who do not change on

M will not change on N. The x
2
value of 5.50 for this component is

significant at a = .05 level. In the following table (Table 9) we

see that 60% of the cases concentrated in the two cells on the main-

diagonal. Further, there is a disproportionate concentration of

cases in the lower right-hand cell, which is mainly caused by the large

percentage of students who mastered the two skills on both pre- and

post-testing.

TABLE 9

Contingency Table of Change by Subtest
(Subtest M)

Subtest N

Change

No change

Change No change

66

(.13)
112

(.21)

93

(.18)

251

(.48)

159 363
(.31,) (.69)

178
(.34)

344
(.66)

9
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Differentiating between
Experimental and Control Groups ,

When fitting a, rank 2 sample matrix with a response matrix of various

ranks, the component chi-squares test the hypothesis of how much response

component differentiates the two experimental groups. Examination of the

lower half of Table 6 shows that of the 15 components, 8 are statistically

significant. On the basis of these tests, the following conclusions are

drawn:

1: With respect to skill M:

a. There is a greater tendency for experimental students to change

positively than for control students,(.21 vs. .15, see Table 10).

The chi-square for this component is 175.15.

TABLE 10.

Contingency Table of Treatment by
Pre-test by Post-Test

(Subtest M)

Pre-test

Nonmaster

Post-test

Master

Experimental
Nonmaster Master

Control
Nonmaster Master

52

(.18)
23

, (.08)
49

(.21)
42

(.18)

60

(.21)

155
. (.53)

34' .

(.15)

107

(.46)

112 178 83 149
(.39) (.61) (.36) (.64)

This hypothesis is of primary interest in this example. An

effective educational program should be one that can make a

meaningful change in students. The traditional method of
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post-test scores, or a significant difference between the experi-

mental and the control group, does not:provide sufficient infor-

mation for making such an educational decision as Whether a cur-

riculum that can increase the reading score by 1 point on the

test should be adopted when such an increase has been shown to

be significant.

Or, to provide another example, let us assume-that two pro-

'grams (A and B) teach skill T. On the average, students in

program A answer 30% of the.items correctly on the test measuring

mastery of skill T, while for those in prOgram B the average is

15%. The scoring criterion is such ,that to be considered a master

of the skill, one must mark at least 70% of the items correctly.

Even if students in program A score significantly higher than

students in program B, neither teaches many students to master

skill T and, therefore, we may not wish to adopt either program.

The component chi-square value of 17.92 indicates that the

probability for students to remain in the same status is greater

for the experimental group than for the control group. To inves-

tigate the source of this effect, let us examine Table 10. At

Pre-testing, the two groups are compa-rable in that 61% Of the

experimental and 64% of the control students are classified as

masters. However, 53% of the experimental students are tasters on,

both occasions, while only 46% of the control students are masters

on-both occasions. The error due to measurement (defined before

as mastery on pre-testing but nonmaster on post-testing) is greater
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for the control group (.18) than for the experimental group (.08),

suggesting a greater tendency for control students to guess on

post-testing.

c. The difference in percentage between consistent masters and per-

sistent nonmasters is greater in the experimental group than in

the control group. The chi-square value for this component is

75.70. Examination of'Table 10 shows that in the experimental

group of 112 nonmasters, 60 became masters (54%) on post-testing;

in the control group, 41% of the nonmasters on pre-testing be-

came masters on post-testing. As discussed in (b) above, of those

who were classified as masters on pre-testing as a result of guess-

ing, there is a greater percentage of the experimental group who

.became masters after instruction.

2. With respect to skill N:

a. The probability for students to remain in the same status is

greater for the experimental students than for the control

group (x
2

= 54.00). This probability is primarily a result

4.

of the disproportionate concentration of students in the con-

sistent masters cell for the experimental group (.46). Notably,

of those who are classified as masters at pre-testing, 78% of

the experiMental students are classified as masters upon poit-

testing. In the control group, only 67% of the masters on pre-

testing are classified as masters' on post-testing (Table 11).
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TABLE 11

Contingency Table of Treatment by
Pre-test by Post-test

,(Subtest N)

Pre-test

Nonmaster

Post-test

Master

Experimental Control
Nonmaster Master Nonmaster Master

'.62

(.21)
37

(.13)
63

(.27)
41

(.18)

59

(.20)

132

(.4§)
41

(.18)

87

(.37)

121 169 104 128
(.41) (.59) (.45) (.55)

, b. Of those who change their mastery status, the experimental group

shows greater probability for learning, while for the control'

group the probability of,change due to learning is equal to

measurement error. The x
2

(5.09) statistic for this hypothesis

fallsa little below a = .05 (.057). ,

c. As on subtest M, the difference in percentage between consistent

masters and persistent nonmasters on subtest N is also greater

in the experimental group than in the control group (x2 = 9.69).

3. Interaction terms:

a. Component 7 of the response matrix is the interaction term of

components 1 and 4. The significant x
2

(7.13) indicates that the

association between subtest M and subtest N is different between

.the two student groups. In the experimental group, 64% of the

students are found in cells a and d (Table 12); and only 57% of

students fn the control group appear in these cells. It is more

35
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likely for the experimental students who change mastery status

on M also to change on N, and for those whd are unchanged on' M

to remain unchanged on N. While control students. may learn

about M or N on their own, they may *learn about one but not the

other and, therefore, their mastery status may change on one

skill but not the other:' Experimental students who are exposed

to the instruction of M are also exposed to the instruction of N,

which therefore results in the higher association.

TABLE 12

Contingency Table of Change by
Subtests by Treatment

Subtest,M

Change

Subtest N

No change

Experimental
Change- No change

Control
Change No change

a 37

(.13)
c 59

(.20)
a 29

(.13)
c 59

(.23)

b 46

(.16)

d 148
(.51)

b 47

(.20)
d 103

(.44)

83 207 76 162
(.29) (.71) (.33) (.67)

While the models presented above provided the opportunity to test a

number of hypotheses, none is found to fit the data well. An alternative `

,--approach to the analysis of the Ecology Program data would be to treat

the response classification as four main categories: skill M pre-test,

skill M post-test, skill N pre-test, and skill N post-test. There are-two
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,onse matrix, thus, woi.13 tp same as the

matrix of 24 factorial design without the vector corresponding to the

grand mean:

X

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 -1 1 1 -1 1 -1 -1 1 -1 -1 -1 -1 2

1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 -1 -1 3

1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 4

1 -.1 1 1 -1 1 1 -1 -1 1 -1 -1 1 -1 -1 5

1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1 1 6

1 -1 -1 1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 7

1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 -1 -1 8

- 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 9

-1 1 1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 1 10
-1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 11

-1 1 -1 -1 -1 1 1 -1 -1 1 1 1 -1 1 -1 12

-1 1 1 1 -1 -1 -1 -H 1 1 1 -1 -1 1 13
-1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 1 -1 14

- 1 -1 -1 1 1 1 -1 1 -1 -1 -1 1 1 1 .=.1 15

- 1 -1 -1 -1 1 1 1 1 1 1 -1 -1 -1 -1 1 16

C2:1
CZ

CIO CZ) C.) C:J CC1 CO CJ L) CflCX) v o t d < m co (...) ¢ d¢ m <

Lac4 of the first four columns tests the probability of falling into

the mastery versus nonmastery class on each of the four main categories.

Columns 5 through 10 test the two-way interaction of the four main cate-

gories. The last six columns are the three-way and jur -way interactions.

Table 13 presents the goodness-of-fit for models of various ranks.
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-For Mo

of Varloi.;,s Ranks

Ranks
Sample Response

Likelihood
chi-square df Probabilities

1 10 44.48 20 0.0013

'2. 4 179.56 22 0.0000

2 10 6.09 10 0.8075

The rank 2 rank 10 model has .a very good fit. Using this model, the

estimated 's and the standard errors for s's are presented in Table 14.

Again, the first column of the sample matrix indicates the general

tendency of the tiw -Aps combined, while the second column compares the

two groups. The findings are listed below.

TABLE 14

Estimated Effects and Standard Errors
for Rank 2, Rank 10 Model

(Ecology Program)

Response
effect (6)

Ph sisal effects>q-E*TFnertnem
A -0.255 (.105)* 0.452 (.211)
B -0.593 (.106)* -0.648 (.212)*

-0.081 (.103) 0.078 (.201)
D -0.174 (.105) -0,216 (.210)

AB 1.426 (.216)* 0.270 (.432)
AC 0.439 (.206) 1.013 (.412)
AD 1 0.471 (.214) -0.527 (.428)
BC 0.332 (.219) -0.333 (.438)

BD 0.752 (.219) 1.570 (.437)*
CD 1.146 (.199) -0.054 (.399)

*2.5 times greater than its standard error as suggested by
Goodman (1973).
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2.

indicate that tY, is a greater percentage of masters than

nonmasters with respect to M on both pre- and post-testing.

Students' mastery status tends to remain the same rather than to

change on both M (B
AB

1.426) and N
(BCD

0.752) and those who

are nonmasters on one skill tend to be nonmasters on the other

skill.

Comparing the Two Experimental Groups

1. Upon post-testing, there are more masters in the experimental group

than in the control group on subtest M (BB = -0.648). As shown in

Table 15, 74% of the experimental students have mastered M on post-

testing, while only 61% of the control students have mastered M for

post-testing (Table 15).

TABLE 15

Frequency Distribution and Percentage
of Masters and Nonmasters on Four Testings

Experimental Control Total
Non-

Master master
Non-

Master master Master
Non-

master

Subtest M. 178 112 149 83 327 195
Pre-testing (.61) (.39) (.64) (.36) (,,62) (.38)

Subtest M 215 75 141 91 356 166

Post-testing (.74) (.26) (.61) (.39) (.68) (.32)

Subtest N 169 121 128 104 297 225
Pre-testing (.58) (.42) (.55) (.45) (.57) (.43)

Subtest N 191 99 128 104 319 203
Post-testing (.66) (.34) (.56) (.44) (.61) (.49)
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Upon ore-testing, the experimental students' mastery on M and N is

related. His association, however, does not occur in the control

group. Since the students are randomly selected and then randomly

assigned to the two instructional groups, it is not possible to

determine the cause of this difference on the pre-testing (Table 16).

TABLE 16

Contingency Table of Pre-testing Results
on Subtests M and N by Treatment Groups

Subtest M

Nonmaster

Subtest N

Master

Experimental
Nonmaster Master

Control
Nonmaster Master

66

(.23)

55

(.19)

41

(.18)
63

(.27)

46
(.16)

123
(.42)

42
(.18)

86
(.37)

112 178 83 149
(.39) (.61) (.36) (.64)

3. indicate that there is a stronger positive relation between the
Du

mastery status on M and N for the experimental group than for the

control group. In the experimental group, it is more likely for those

who have mastered M also to master N, and for those who have not

mastered M not to master N. This finding may be a result of the fact

that the experimental students are exposed to instruction on both

M and N, whereas the control studenti may be exposed to one

but not the other. In other words, the experimental students' learning

experience on the two skills is planned, whereas the control students'

exposure to these two skills is not (Table 17).



41

TABLE 17

Contingency Table of Mastery Status on
M and N by Treatment Groups

Subtest M

Nonmaster

Subtest N

Master

Experimental
Nonmaster, Master Nonr;.).:.. Master

48
(.17)

51

(.18)
45

(.19)
59

(.25)

47
(.09)

164
(.57)

46
(.20)

82
(.35)

)75 215 91 141

(.26) (.75) (7 39) (.60)

Table 18 gives the observed and estimated frequencies using the rank 2

rank 10 model. It can also be used to check the fit of the model.

TABLE 18

Observed and Estimated Response
of Studenti in Experimental and Control Groups

M1 M2 N1 N2 Observed Frequencies Estimated Frequencies
Experimental Control Experimental Control

0\

0

0

0

0
0

0

f

1

1

1

1

1

1

1

0 0 0 28 19 26 19
0 0 1 9 - 8 8 8
0 1 0 8 10 9 9
0 1 1 7 12 9 13-

1 0 0 10 9 13 10
1 0 1 19 5 19 4
1 1 0 7 9 5 9
1 1 1 24 11 23 11

0 0 0 4 11 7 11

0 0 1 3 10 3 10
0 1 0 8 5 6 5

0 1 1 8 16 7 15

0 1 0 20 24 16 23
0 1 1 28 18 29 19
1 1 0 14 17 17 18
1 1 1 93 48 93 48

Total 290 232 A 290_ 232
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DISCUSSION

This study presents a proficiency assessment model, that provides

information on individuals' mastery status on specific skills. The

assessment model describes the construction and scoring of mastery tests

as well as the organization and reporting of individual and group testing.

results.

When the model is used, each individual's mastery status (mastery

or nonmastery ) with respect to several skills can be represented by a

vector with n elements, where n equals the number of skills tested. This

type of multivariate quantitative data is analyzed by the log-linear

model which incorporates both a sampling factor (e.g., experimental group

versus control group) and a response structure. The model, therefore,

provides test statistics to assess the differences in capability of the

sampled groups as well as the structure represented by the response factors.

The two examples presented illustrate the applicability of the log-

linear model in the analysis of proficiency assessment results. In the

first example, the contingency table from Solomon's (1961) study was

adapted for use in a hypothetical setting with the intention of illus-

trating how to evaluate the differentiating capability of master measures.

A good instrument, theoretically, should be one that can accurately

differentiate between "experts' a'nd "nonexperts" and between students

who have had instruction and students who have had no instruction. To

evaluate the "goodness" of the Reading Comprehension Test empirically,

the hypothetical example presumes that the test was given to a random

sample of program students and to a random sample of nonprogram students.
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The results of the statistical analysis indicates that the instrument as

a whole differentiates between the experimental and control groups. The

two subtests measuring objectives c and d differentiate between the two

groups the most while the subtest for objective a does not differentiate

between the two groups. Measures with medium response probability, over-

all, are better discriminators than measures with extreme response prob-

ability. However, with mastery measures, the groups of experts could all

have a score of 1, and the group of nonexperts could all have a score

of 0. When the number of cases in the two groups is equal, therefore,

such as in the given example, the overall response probability would be

.50. In this context, the above-mentioned conclusion agrees with the

classical theory of measurement.

The log-linear model, however, is capable of. detecting differences

in the mastery status of instructed and uninstructed groups when there is

a disproportion of students in the groups which would lead to overall re-

sponse propensities outside the middle range. Thus, if there are four

times as many experts as nonexperts, and all the experts demonstrate

mastery while the nonexperts are nonmasters, then the overall response

probability will be .80: but the log-linear model will still detect the

group difference.

The second example deals with the use of mastery measures in an actual

educational program evaluation. Here, the 10th grade results of the Los

Angeles Unified School District's ESEA Title III Ecology Program were

analyzed, using the proposed model. Two different approaches were employed

in formulating the response matrix.
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The results of the analysis indicated that students using the program

material were more likely to improve than students not using the material,

on the two skills taught in the program. Among the group of students with

instruction, those who mastered one skill were more likely to master the

other skill; this relationship did not exist among the group of students

without instruction. This result could be interpreted to mean that the stu-

dents in the noninstructed group could be exposed to one skill but not the

other, whereas students in the instructional group were exposed to both skills.

Therefore, in the noninstructed group, students' mastery status on either

skill was related to the degree of advantageous exposure they received; while w

in the instruction group, exposure to both units seemed to have a reinforcing

effect,

The results also indicated that students' mastery status in both groups

was more likely to remain the same than to change. This finding indicated

that the program was not efficient, primarily as a result of the great per-

centage of students who were masters on both skills at pre-testing (.62 and

.57). As suggested by Novick and Lewis (1974), a carefully monitored program

will, typically, be such as to suggest a prior probability distribution that

assisgns a probability of just more than .50 to the region above the criterion

level. By this rule, the post-testing goal was achieved upon pre-testing in

the given example. According to Novick and Lewis, then, the program may be

wasteful and should have been revised for implementation at a lower grade

level as soon as the pre-testing results were reported.

The log-linear model presented in this study permits a concise analysis

of data arising from the use of mastery measurements. Further explorations

'of the use of this model should concentrate on manipulations of the mastery

level criteria in light of the efficj,ency notion proposed by Novick and Lewis,

as applied in educational evaluations.

41 J



45

REFERENCES

Bartlett, M. S. Contingency table interactions. Journal of the Royal
Statistical Society, 1935, 2, 248-252.

Block, J. H., & Burns, R. B. Mastery learning. In L. Shulman (Ed.),
Review of research in education Vol 4. Itasca, IL: Peacock, 1976.

Bock, R. D. Estimating multinomial response relations. Jn R. C. Bose,
et al. (Eds.), DLossatistcontributioriaAnsLan
in memory of S. V. R. Chapel Hill: University of North Carolina
Press, 1969.

Bock, R. D. Multivariate statistical methods in behavioral research.
New York: McGraw-Hill, 1974.

Bock, R. D., & Jones, L. V. The measurement ang prediction of judgment
and choice. `pan Francisco: Holden Day, 1966.

Bock, R. D., & Y.tes, G. Multiqual log-linear analysis of nominal or
ordinal qualitative data by the method of maximum likelihood. Chicago:
National Educational Resources, 1973.

Bloom, B. S. Test reliability for what? Journal of Educationalysychology,
1942, 33, 517-526.

Bloom, B. S. Learning for mastery. UCLA Center for the Study of Evaluation.
Evaluation Comment, 1968, 1(2), 1-12.

Boneau, C. A. The effects of violations of assumptions underlying the
t test. Psychological Bulletin, 1960, 57, 49-64.

Carroll, J. B. The nature of the data, or how to choose a correlation
coefficient. Psychometrika, 1961, 26(4).

Carroll, J. B. A model of school learning. Teachers College Record, 1963,
64, 723-733.

Conover, J. Practical nonparametric statistics. New York: John Wiley,
1971.

Coulsen, J. E., & Cogswell, J. F. Effects of individualized instruction
on testing. Journal of Educational Measurement, 1965, 2, 59-64:

Cronbach, L. J. Essentials of psychological testing, 3rd ed. New York:
Harper and Row, 1970.

Fisher, R. A., & Roberts, J. A. F. A sex difference in blood-group fre-
quencies. Nature, 151, 640-641.

Glaser, R. Instructional technology and the measurement of learning out-
comes. American Psychologist, 1963, 18, 514-541.



46

Good, I. J. Maximum entropy for hypothesis formulation, especially for
multidimensional contingency tables. Annual Mathematical Statistics,
1963, 34, 911-934.

Goodman, A. Guided and unguided methods for the detection of models for a
set of T multidimensional contingency tables. Journal of the American
Statistical Associatibn, 1973, 68, 165-175.

Goodman, L. A. The analysis of multidimensional contingency tables:
Stepwise procedures and direct estimation methods for models for
multiple classifications. Techometrics, 1970, 12.

Graybill, A. An introduction to linear statistical models. New York:
McGraw-Hi

Harris, C. W. Some technical characteristics of mastery tests. CSE
Monograph Series in Evaluation, 1974, 3, 98-115.

Keesling, J. W. Empirical validations of criterion-referenced measures.
CSE Monggraph Series in Evaluation, 1974, 3, 159-176.

Norton, J. W. Calculation of chi square from complex contingency tables.
Journal of the American Statistical Association, 40, 251-259.

Plackett, R. L. A note on interactions in contingency tables. Journal of
the Royal Statistical Society., B24, 162-166.

Rao, C. R. Linear statistical inference and its a
John Wi ey,

Rao, S. N. Some aspects of multivariate analysis.
Wiley, 1957.

lications.

New York:

New York:

John


